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Abstract

Falling sequencing costs and large initiatives are resulting in increasing amounts of data

available for investigator use. However, there are informatics challenges in being able to

access genomic data. Performance and storage are well-appreciated issues, but precision

is critical for meaningful analysis and interpretation of genomic data. There is an

inherent accuracy vs. performance trade-off with existing solutions. The most common

approach (Variant-only Storage Model, VOSM) stores only variant data. Systems must

therefore assume that everything not variant is reference, sacrificing precision and

potentially accuracy. A more complete model (Full Storage Model, FSM) would store the

state of every base (variant, reference and missing) in the genome thereby sacrificing

performance. A compressed variation of the FSM can store the state of contiguous

regions of the genome as blocks (Block Storage Model, BLSM), much like the file-based

gVCF model. We propose a novel approach by which this state is encoded such that both

performance and accuracy are maintained. The Negative Storage Model (NSM) can store

and retrieve precise genomic state from different sequencing sources, including clinical

and whole exome sequencing panels. Reduced storage requirements are achieved by

storing only the variant and missing states and inferring the reference state. We evaluate

the performance characteristics of FSM, BLSM and NSM and demonstrate dramatic

improvements in storage and performance using the NSM approach.
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Introduction

Massively parallel sequencing results represent the latest
emergence of ‘big data’ in the life sciences. Although many
of the technical and analytical challenges and issues are
no different from those that came before (for example,
in microarray or capillary sequencing data), massively
parallel sequencing data represents a large increase in the
amount of information (around 10 000× increase in total
bases stored by the Sequence Read Archive since 2009
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi? accessed
17 December 2018). Many methods and tools have been
developed for compression and storage of sequence reads
(i.e. SAM/BAM/CRAM (1)) and variation data (VCF, BCF,
MAF, tabix (2)). Variation data is of particular interest given
the desire to analyze, query and integrate the data of many
individual samples. Storage of sequencing data from many
individual samples is certainly possible using structured text
files, and many programs are able to analyze such multi-
sample files (VarSifter (3), SVA (4), GEM.app (5)). However,
as more and more samples are sequenced, database storage
technologies are increasingly being leveraged to store
genetic data. This offers distinct advantages to data storage:
structured query language (SQL) approaches and strategies
have been applied to numerous other fields with great
success, in part due to a common query language. Large-
scale visualization web applications like the UCSC Genome
Browser (6), cBioPortal (7), MEXPRESS (8) and COSMIC
(9) have leveraged database technology to display summary
genomics information rapidly. In addition to classic SQL
models, new database philosophies have been developed
to focus more on the ability to store larger amounts of
data in part by dispensing with some of the strict rules of
data organization and de-duplication (‘normalization’) that
characterize SQL databases. Such systems, often termed
‘NoSQL’ databases, have proven their worth via extensive
use in internet content storage systems used in current
popular social media products. They have also been shown
to offer improved performance for genomic annotation
storage (10). Many platforms and interacting frameworks
have already been developed to store, query and present
data in visually appealing graphical user interfaces. Many
forms of associated information (for example, patients’
clinical information) may already be stored in such systems.
The addition of genomic variation data therefore allows for
integrated queries that enable improved understanding of
the relationship between genotype and phenotype.

Even though database systems are designed for large
amounts of data, it is unclear to what extent they will
scale when faced with genome level information across
many thousands of samples. For example, given a 3 billion
base pair human genome, 10 000 patients would involve 30

trillion rows of data. This has been initially addressed by
restricting the regions of the genome undergoing sequenc-
ing. Although sequencing costs have dramatically decreased
(11), further cost savings have come from targeted capture
before sequencing, such as is commonly applied via a vari-
ety of whole exome sequencing (WES) commercial kits. This
reduces the number of potential variants proportionally
to the capture target (i.e. WES results in ∼1% the data
of whole genome). Many home-grown variation database
solutions have further addressed this issue by only storing
genetic variations compared to a reference genome. Given a
3 billion base pair human genome, a per genome variation
rate of 0.13–0.16% per genome (12), and a much lower
somatic mutation rate in cancer (13), storing only inherited
variants would result in a >99% reduction in information
stored.

However, storing only genomic variants results in a
potential loss of precision. The lack of a stored variant at
a given position is usually inferred to mean that the sample
has a reference genotype. However, given that sequencing
is not 100% sensitive to detect variants, there is also the
possibility of a missing or low quality result that should
NOT be assumed to be reference. An even greater challenge
is often seen within institutions, including our own. When
many different capture kits are being used in both research
and clinical settings, the absence of a variant could represent
a different type of missing data: the untested position.
Therefore, there is a distinct need for a genetic variation
storage strategy that reduces that amount of stored infor-
mation but preserves the precision to know whether a given
position in a sample was reference, variant or missing.
We have developed a data storage approach, the Negative
Storage Model (NSM), by inverting the typical paradigm
of storing only what is known. This model stores tested
regions, known variants within those regions and, counter-
intuitively, those positions that were missing in the dataset.

Introduction: storing genetic variation data

Genetic variation data defines locations in the genome that
distinguish individuals from one another and their genetic
code (genotypes) at these positions. The most straightfor-
ward method of storing this information is to imagine a
matrix with one column per genome position, and one
row per sample. We term this model the Full Storage
Model (FSM). In a simplistic example, a cohort of 7 human
samples with 11 positions of interest could be represented
by a 7 patient × 11 position matrix (Figure 1). In prac-
tice, the matrix could include thousands of samples and
3 095 693 981 positions. Each element of the matrix stores
the state of a position in a given sample: reference (or non-
variant), variant (or mutated) and missing (or insufficient
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Figure 1. Overview of genetic variation storage models. This example shows the same 7 samples and 11 positions using (A) Full Storage Model,

(B) Variant Only Storage Model, (C) Block Storage Model and (D) NSM. The features and information stored in each model are listed to the right.

FSM: Full Storage Model, VOSM: Variant Only Storage Model, BLSM: Block Storage Model, NSM: Negative Storage Model.

data) (Figure 1a). Getting the exact state of a position-
sample from this model is very easy. Consider Position 9
in Figure 1a. We can easily determine that four of seven
samples had information (three out of seven were miss-
ing at that position), and three out of four samples with
data had a variant. However, this storage matrix is quite
large, potentially leading to poor performance character-
istics. Since we know that much of the human genome is

non-varying, many positions will not hold differentiating
information.

A second option focuses more on the variants themselves
and indeed stores nothing else (Figure 1b). However, we
lose all information about non-variant positions. We term
this model the Variant-Only Storage Model (VOSM). If
sequencers were perfect, and we never had missing data,
such a system would maintain precision as we could safely
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assume everything not stored was non-variant. However,
sequencing instruments have error rates, targeted capture
sequencing results in incompletely covered genomes and
depth-of-coverage variations result in positions with insuf-
ficient information to conclude a position is non-variant.
For example, Position 9 shows three out of seven samples
with a variant, and the remaining four out of seven are
assumed to be non-variant. However, we know the non-
variant assumption to be false as the last three samples
are missing information about that position. Although the
storage efficiency of a variant-only model is high, the loss
of precision and potential for highly inaccurate results is a
significant risk.

A third option retains the precision of the FSM, but
collapses individual positions into contiguous blocks of
common information state (reference, variant or missing).
The Block Storage Model (BLSM) is most commonly seen
in gVCF file output as part of certain genetic variant
identification tools, including the Genome Analysis Toolkit
“HaplotypeCaller” module (14). This model, like the FSM,
accounts for every base in the genome. However, a level of
compression is achieved by combining positions of common
state together in a single block (Figure 1c). For example, an
unbroken group of reference bases can be joined together
as one data entry. This offers precision, and a level of
compression, but still requires storing information outside
of targeted regions.

Current genetic variation storage models have distinct
weaknesses. Although the Full Storage Model offers high
precision, it requires a large amount of storage space, and
we show that performance can be poor. The Variant-Only
Storage Model allows for improved performance and is
therefore widely used. However, it can be considered a
‘lossy’ compression method, and the loss of precise infor-
mation for non-variant positions can result in inaccurate
results. The risks of inaccuracy are highest when consid-
ering large datasets of distinct capture kits, where the tar-
geted regions and sequencing technologies may be different
across samples. For example, an institution wishing to store
sequencing data generated by several large but different
research projects as well as more focused clinical sequenc-
ing panels would have distinct target genes and coverage
profiles over those genes, resulting in a risk of inaccurate
assessment of mutation frequencies across the sample set.

Results: NSM

We propose a storage model (Figure 1d) for genetic varia-
tion data where we store not only what is known (genetic
variants) but also what is unknown (missing positions). This
information is combined with knowledge of the regions
that were actually tested (the target region) to infer the

reference state. From studies of human genetic variation
and tumor mutations, we know that the majority of posi-
tions in the genome are invariant between individuals.
Therefore, we leverage that knowledge to save storage by
inferring this state instead of storing it. We restrict this
assumption to those positions that were actually tested
(based on definitions of a genomic capture target region,
if appropriate). Any positions outside a sample’s target
region are inferred to be missing (Figure 1d, empty black
squares). We store as variants (Figure 1d, filled red squares)
those differences from the human reference genome along
with their associated contextual information (amino acid
change, frequency in public databases, etc). We store as
missing (Figure 1d, filled black squares) those positions that
had insufficient data to determine whether a variant is
present. Since the quality of sequencing data is generally
high, only a minority of positions is expected to be ‘missing’
based on absence, insufficient depth of coverage or other
issues resulting in a low confidence variant determination.
In contrast, most non-variant positions (Figure 1d, empty
grey squares) are high-confidence reference alleles. There-
fore, our assumptions regarding ‘reference’ without actually
storing this information are more than simple assumption:
we have specifically identified those positions that violate
this assumption and stored them as missing data. This
strategy enables precise knowledge of the exact state of a
given position, be it variant, non-variant or missing, while
reducing the amount of information actually stored.

Consider the following example based on Position 1 in
Figure 1d. All samples include Position 1 in the target region
(thin blue horizontal boxes), so we should have information
for all samples. Samples 1–3 and 7 are non-variant, and so
nothing is stored—we will infer these positions to be non-
variant. Sample 5 has a variant, and the variant information
is stored. Samples 4 and 6 are missing data and are therefore
neither variant nor reference. We store a ‘missing’ value
here. So, we are able to determine that five out of seven
samples have information at Position 1, and one out of
five have a variant. In our earlier example, we have stored
variants at Position 9 for Samples 1–3. For Sample 4, we
know that Position 9 is in the target region and, as nothing
is stored, will infer that it is reference. For Samples 5–7,
we know Position 9 is not included in the target region,
which will therefore be inferred to be missing. We can infer
precise information to know that three out of four samples
are variant.

Data is input into the NSM in a multistep process
(Figure 2). First, a targeted subset of positions is defined.
This subset includes those positions targeted by a particular
targeted capture kit used in a sequencing experiment (e.g.
Whole Exome, focused clinical panel, custom gene panel).
Then, all positions within the targeted region are assessed
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Figure 2. NSM data loading process. The process for determining what information should actually be stored in the database.

for quality. If there is insufficient data to have accurately
determined the genotype at a position, the position is con-
sidered ‘missing’, and the value of ‘missing’ is stored at
that position for that particular sample. If data quality
is sufficient, and the genotype is a variant compared to
the reference, the variant and its associated contextual
information are stored. If data quality is sufficient, and the
genotype matches the reference, it is not stored, but later
inferred to be ‘reference’.

Querying data from the NSM follows an inverse
sequence of events (Figure 3). First, it is determined whether
or not a query position is in the targeted subset. If the
query position is NOT within the target region, a ‘missing’
value is returned as there is no knowledge of positions
outside the target region. If the query position is within
that sample’s target region, a check for ‘variant’ status is
performed. If a variant is present, the associated variant
information is returned. Otherwise, a check for ‘missing’
status is performed. If a ‘missing’ value is present, the
‘missing’ status is returned. If no values are present, a value
of ‘reference’ is returned, as it can be inferred from the
loading procedure that the absence of ‘missing’ indicates
sufficient data quality at the position, and the absence of a
variant indicates the genotype is reference.

Results: performance

The NSM can be implemented in standard SQL databases
using custom schema and queries. To demonstrate perfor-
mance, we compare our NSM to the FSM, where all pieces
of information (variant, reference, missing) are stored,

and to the BLSM, where all pieces of information are
stored compressed as blocks of genomic regions. VOSM
is not tested as the potential for inaccuracy excludes
it from consideration based on our requirements. NSM
and FSM schemas were implemented in SQL databases
(MySQL, Oracle) and a NoSQL database (MongoDB).
A BLSM schema was implemented in MongoDB. To
test the model, we stored the mutation information
from 367 tumor samples from the TCGA SKCM WES
dataset downloaded from tcga-data.nci.nih.gov (March
2016). Coverage files were downloaded from https://
www.synapse.org/#!Synapse:syn1695394. In this proof of
concept, the region of interest is defined as the padded
coding exons of RefSeq genes.

We first evaluated the storage requirements of both
approaches. The FSM stored a value of ‘mutated’ (with
associated annotation information), ‘unmutated’, or ‘miss-
ing’. A known target region of 43 022 725 bases (including
25 bp on each side of an exon) was stored for each sample,
resulting in a total of 15.8 billion data elements (Table 1).
The BLSM stored similar values for contiguous blocks of
sequence, resulting in only 164.9 million elements. The
NSM stored even fewer elements: across the 43 million
targeted base pairs, only mutations and missing data were
stored. The majority of positions, being neither mutations
nor missing, were inferred to be the same as reference. The
total of 140.7 million elements was much lower than the
FSM, and slightly lower than the BLSM, but maintained
the precision necessary for rigorous downstream analy-
ses. Unsurprisingly with many fewer data elements stored,
database size for NSM was 0.7–0.8% of the full storage
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Figure 3. NSM data querying process. The process for extracting precise information for a given position based on the model and information stored

in the database.

model (NSM: 6.3–13.8 GB; BLSM: 14.6 GB; FSM: 876–
1665 GB). NSM storage size was 43–95% of the BLSM,
indicating both models compress precise variant informa-
tion well, with NSM being somewhat better. These sizes
included indexes generated to support subsequent query
testing.

The load times associated with NSM were next com-
pared to FSM and BLSM. Given large amounts of data to be
stored, the time needed to load data can be significant. NSM
load times (including indexes) were much faster than FSM,
ranging from 0.8–2 h in total, while FSM ranged from 148–
1296 h (6–54 days). NSM was also much faster than BLSM:
453 h (19 days) with the majority of time being spent on
pre-calculating the block structure. Load times, particularly
for the FSM databases, were optimized by creating indexes
after data loads.

The NSM resulted in decreased data storage, but queries
were more complex. Query execution time was tested using
four different use cases (Box 1). The NSM query time
(MongoDB implementation) was often faster across all test
cases (Table 1), with the notable exception of the MongoDB
implementation of the FSM, which was fastest at all queries.
BLSM query performance was somewhat slower than the
NSM MongoDB implementation except for Query 4. Query
outputs from the different strategies were identical, demon-
strating the precision of the NSM.

Box 1 Queries used as test cases for evaluation of
storage model performance

1. Return sample status at a position

• INPUT: chromosome , position
• OUTPUT: status (ref, alt, missing) for all samples

2. Return sample status for a given mutation (gene,
amino acid change)

• INPUT: gene, amino acid change
• OUTPUT: status for all examples

3. Return sample status at all mutations in a gene

• INPUT: gene
• OUTPUT: status for all samples at all mutations

4. Return sample coverage across a gene

• INPUT: gene
• OUTPUT: fraction bases with high quality data per

sample
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Table 1. Performance metrics of genetic variant storage models

Approach Load time Use case 1 Use case 2 Use case 3 Use case 4 DB size (GB) DB record (rows)

FSM MySQL1 216 h 600–4000 600–4000 1.1 M–10.5 M 216 1100 15.8B
FSM Oracle1 1296 h ∼1 ∼1 2628 33 1665 “
FSM MongoDB1 148 h 0.002 0.002 0.746 0.009 876 “
BLSM MongoDB1 453 h 5.5 1.9 87.1 0.1 14.6 164.9 M
NSM MySQL2 2 h 13.2 12.1 635 0.01 13.8 140.7 M
NSM MongoDB1 0.8 h 1.6 0.7 43.9 0.361 6.3 “

Time in seconds, unless noted 116× Xeon E7-4480, 256 GB RAM, SSD 24× Xeon ES-2650, 64 GB RAM, SSD

Discussion

We have proposed a novel model for the precise storage of
genetic variation data. This model accounts for the state
(reference, variant or missing) of every position in the
genome without having to store each piece of information.
Variation and missing data are stored, and reference data
(the vast majority of information in sequencing experi-
ments) is inferred based on targeted genomic regions and
absence of variation or missingness. This results in the
ability to precisely know the status of a given position
across samples. We have outlined the algorithms for loading
and extracting data from the model we have termed the
NSM.

We have performed proof-of-principle testing on somatic
mutation data from 367 TCGA Skin Cutaneous Melanoma
samples. The NSM was compared to a full storage model
(FSM), where every coding base is stored with its state, and
to a Block Storage Model (BLSM), where the information
for individual bases is compressed into blocks as in the
gVCF file format. We found that although the NSM
required more complex queries, performance was similar
to or better than FSM. This is likely due to the smaller
amount of data to be traversed by a given query. NSM
queries were slightly faster than BLSM, suggesting that
while both methods of compression are effective, NSM
may have a performance advantage. We also found that
the MongoDB NoSQL database is a powerful tool for
querying large databases and was effective for all three
approaches. This required the use of indexes; without
indexes, MongoDB performance using the NSM was much
worse (Supplemental Table 1), suggesting that indexing
strategies will remain a critical part of NoSQL database
tuning. We observed that data loading was much faster
with NSM. NSM required hours, whereas FSM required
days (up to 54 days for the Oracle example). FSM loading
times did not include time spent rerunning the load due
to a hardware issue that caused an initial attempt to fail
before completion. BLSM also required a longer time to
load (19 days) due to the need to precompute the block
structure. Load times for each approach could likely be
decreased with additional model-specific tuning.

Although queries in the FSM are simpler, the larger
amount of data created many challenges. Numerous errors
were encountered during data loading and querying, partic-
ularly using the Oracle and MySQL implementations. Any
interaction with this data strategy was qualitatively much
more fragile due to resource exhaustion, hardware vulner-
abilities and other typical error modes of computation.

Querying the NSM required more effort than the full
storage model due to additional requirements (Figure 3).
However, range-style queries (query position is >= start
and <= end) were effective in determining whether a given
position was included in the target region. These range-
style queries were also well-suited to the BLSM given its
block structure, but were distinct from those used in NSM.
We envision an API would be important to separate the
details of given database queries from other layers (includ-
ing visualization). It is important to note that NSM is a
storage model. We implemented NSM as proof of concept
using several database systems. As with any technology,
increasing resources are needed to handle larger amounts
of data, and an approach suitable for thousands of samples
may be overkill for smaller use cases. Going forward, we are
exploring alternate implementations to allow scaling from
small datasets (using file-based or in-memory databases) to
larger (using dedicated database servers or clusters).

In summary, we have described strategies for storage of
genetic variation data: the Variant Only Storage Model,
Full Storage Model, Block Storage Model and NSM. The
VOSM does not support full precision of genomic variants
to be stored. The FSM does provide this precision but
with significant performance and storage limitations. The
BLSM improves performance and storage requirements
while maintaining precision, although there is an initial
cost to calculate the block boundaries and information.
The NSM is a novel approach to this particular large data
problem and leverages the observation that the human
genome is largely invariant across individuals. Instead of
storing everything we know, NSM stores the less common
variations and missing data. Leveraging what we should
know (the targeted region for Whole Exome and other
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targeted sequencing panels), we can then infer those regions
that have a reference genotype, given the absence of a stored
variant or missing position. NSM has been used by our
group as a ‘staging’ system to bring a variety of DNA
sequencing experiment types together into a single system.
Once the data are precisely stored, they can be exported in
a variety of formats (including the precise gVCF file). In this
way, we have harmonized different data types together for
eventual analysis. Although a Full Storage or Block Storage
Model can be used for this purpose, we introduce the NSM
as a more efficient way to store ever-increasing amounts of
genetic variation data.

Methods

Proof of concept schemas for NSM and FSM were imple-
mented in MySQL (v5.7, engine:InnoDB), Oracle (12C)
and MongoDB (v4, engine: Wired Tiger). Proof-of-concept
BLSM was implemented in MongoDB (v4, engine: Wired
Tiger). We used 367 tumor samples from the TCGA SKCM
WES dataset as a test cohort. The Level 3 somatic muta-
tions were downloaded from tcga-data.nci.nih.gov (March
2016). Coverage files were downloaded from https://www.
synapse.org/#!Synapse:syn1695394. The region of interest
is defined as the coding exons of RefSeq genes plus 25 bp
padding, downloaded from the UCSC Genome Browser.
All models started with the same mutation dataset and
coverage. Performance was evaluated on one of the follow-
ing servers: 4× Xeon ES-2650, 64GB RAM, SSD storage;
16× Xeon E7-4480, 256GB RAM, SSD storage. Database
caches were flushed after each query to ensure consistent
measurements.

The code, data and documentation for the storage mod-
els are available at the following link: http://lab.moffitt.org/
teer/genetic-variation-database-storage-models/.

Supplementary data
Supplementary data are available at Database Online.
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