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Abstract

A gene regulatory process is the result of the concerted action of transcription factors,

co-factors, regulatory non-coding RNAs (ncRNAs) and chromatin interactions. Therefore,

the combination of protein–DNA, protein–protein, ncRNA–DNA, ncRNA–protein and

DNA–DNA data in a single graph database offers new possibilities regarding generation

of biological hypotheses. GREG (The Gene Regulation Graph Database) is an integrative

database and web resource that allows the user to visualize and explore the network of

all above-mentioned interactions for a query transcription factor, long non-coding RNA,

genomic range or DNA annotation, as well as extracting node and interaction informa-

tion, identifying connected nodes and performing advanced graphical queries directly on

the regulatory network, in a simple and efficient way. In this article, we introduce GREG

together with some application examples (including exploratory research of Nanog’s

regulatory landscape and the etiology of chronic obstructive pulmonary disease), which

we use as a demonstration of the advantages of using graph databases in biomedical

research.

Database URL: https://mora-lab.github.io/projects/greg.html, www.moralab.science/

GREG/

Introduction

The study of a regulatory process is a combination of the
concerted action of transcription factors (protein–DNA
binding data), protein complexes and co-factors (protein–
protein interaction data) and regulatory non-coding
RNAs (ncRNAs) (ncRNA–DNA binding and ncRNA–

protein interaction data), as well as chromatin interactions
(DNA–DNA interaction data). Therefore, the combination
of the above five types of data in a single repository
offers new possibilities regarding generation of biological
hypotheses, such as co-regulation, transcription factor (TF)
multimerization, enhancer–promoter interactions, protein–
ncRNA complex structures and the role of 3D organization
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in gene regulation, as well as mechanisms combining all the
previous evidence in a complex regulatory landscape.

We introduce GREG (The Gene Regulation Graph
Database) (1), an integrative database and web resource
that we have developed to offer an integrative analysis
of transcriptional regulation in a simple graphical way.
GREG is not only a database but also a visualization
and data exploration platform. GREG’s web platform
allows genomic researchers to (i) visualize all the known
interactions between proteins, RNAs and DNA for a query
transcription factor, RNA or genomic range of interest; (ii)
directly extract node and interaction information (such as
data source, experimental methods and other details) from
the resulting integrative network; (iii) expand the queried
graph and explore it by merely clicking on nodes and
edges; and (iv) perform advanced graphical queries such
as finding the shortest paths that link two biomolecules in
a cell’s regulatory landscape. In this paper, we describe
GREG’s structure and share some examples applied to
the exploratory research of regulatory landscapes and the
etiology of chronic obstructive pulmonary disease (COPD).

Materials and methods

Our approach is based on building a ‘graph database‘
with interaction information coming from multiple source
databases: 4DGenome (2) for DNA–DNA interactions, iRe-
fIndex (3) for protein–protein interactions, Cistrome (4)
for protein–DNA binding, LnChrom (5) for long non-
coding RNA (lncRNA)–DNA interactions, starBase (6) for
lncRNA–protein interactions and Gencode (7) for DNA
annotation. Graph databases are an approach that has
already been adopted for other bioinformatics projects such
as Bio4j (8), cyNeo4j (9), BioGraph (10), MELODI (11) and
Reactome (12).

Graph databases are able to model complex relation-
ships that are difficult to model using relational databases.
Besides that, they allow us to observe such relationships
directly and get their associated data from hovering over
nodes and edges instead of accessing and browsing tables. In
addition, they allow us to build complex graphical queries
such as those based on shortest paths, clustering and net-
work expansion. GREG’s database is written in Neo4j (13),
while its web platform is written in Java (14), JavaScript
(15) and vis.js (16).

GREG is also a data integration project, the main chal-
lenge being the need to integrate protein and lncRNA data
(which are biomolecules) with genomic coordinates (which
are numerical ranges). To accomplish that, all genomic
DNA has been binned. A bin is an arbitrary segment
of a chromosome with a pre-defined size, which is more
susceptible to be added to a graph than a single base pair

and therefore is useful to organize heterogeneous interac-
tion information such as that from proteins and DNA.
Currently, GREG works with bins of a fixed size. Users can
choose between large bins (200 kb) or small bins (2 kb).
While several tools produce networks of gene–gene rela-
tionships, and a few resources can be found for enhancer–
promoter interactions, GREG includes interaction informa-
tion for every single DNA bin in the genome.

Another challenge was the harmonization of bins and
small protein-binding sites with data coming from chro-
matin interaction technologies of vastly different resolu-
tions, which GREG tackles by introducing special ‘chro-
matin range’ nodes that define chromatin interactions. The
chromatin range is a specific range, as reported in a chro-
matin interaction experiment. Therefore, chromatin ranges
are the nodes linking chromatin–chromatin interactions,
and they could be larger or smaller than DNA bins, depend-
ing on the chosen size of the bin and the resolution of the
chromatin interaction experiment.

In addition to the above-mentioned binding and interac-
tion relationships, GREG stores two auxiliary relationships
called ‘connection’ and ‘inclusion’. The first one links con-
secutive DNA bins, in order to keep chromosomes together,
while the second one links chromatin interaction ranges
to DNA bins, as explained above. Figure 1 summarizes
GREG’s data model.

Nodes and relationships contain additional information
stored as properties. In GREG, such properties can be
accessed by hovering over nodes and relationships. Table 1
summarizes the properties included in GREG v.1.0.

GREG v.1.0 consolidates data from eight human cell
types, including three stem cells (H1, IPS19.11, IPS6.9), four
cancer cells (A549, K562, MCF-7, HeLa) and one other
cell line (IMR-90), from the following source databases:
iRefIndex (v.13.0), Cistrome (v.2018), Gencode (release
21), 4DGenome (downloaded June 2018), LnChrom
(downloaded June 2018) and starBase (downloaded June
2018). iRefIndex, in turn, consolidates data from multiple
interaction databases, including BIND, BioGRID, CORUM,
DIP, HPRD, InnateDB, IntAct, MatrixDB, MINT, MPact,
MPIDB and MPPI. The databases were chosen according
to different criteria including openness, comprehensiveness
and popularity. The cell types were chosen because they can
be found in all the selected databases; i.e. there is available
information on each of the types of interactions under study.
All genomic data were converted to hg38 human genome
using University of California Santa Cruz’s liftOver. All
downloaded files were processed using R and then merged
into a Neo4j graph using a script written in Cypher (Neo4j’s
query language) through Python’s Py2neo library (17). The
corresponding integration scripts are available at https://
github.com/mora-lab/GREG. The database was built using
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Figure 1. A GREG regulatory landscape. A regulatory landscape contains DNA bins (blue), which are ‘connected’ between them. DNA-binding

proteins or TF (red) ‘bind’ the DNA bins and ‘interact’ with other proteins (red). DNA bins (blue) also ‘include’ some DNA ranges (yellow), which, in

time, ‘interact’ with other ranges through chromatin–chromatin interactions (black). lncRNAs (orange) can interact with both bins and proteins.

Python 3.6, Py2neo v4 and Neo4j Community Edition 3.5,
while the web platform was built using Java 1.8.0 and vis.js
community edition.

Results

Description

GREG not only can be accessed directly as a Neo4j database
using Cypher but also can be accessed from our website
(1). In the web platform, the user can specify a cell type,
chromosome and DNA bin size and ask for the network
of interactions around a given TF, lncRNA, genomic range
or a specific DNA annotation (gene name or gene ID).
The output, or ‘regulatory landscape‘, will be the sub-graph
induced by the query (i.e. the sub-network generated by all
protein–protein, protein–DNA, protein–lncRNA, lncRNA–
DNA and DNA–DNA interactions according to the query),
and it can be visualized on the screen or be downloaded
in a graphical format such as graphML (18) for further
graphical processing. Other features of the web version
include choosing between random or hierarchical network
layouts, filtering a regulatory landscape according to user-
defined relationships, possibility of moving nodes around
the network, expanding a node (in terms of a specific
relationship), deleting a node or an interaction, publishing a
text report with summary statistics of the input and output,
and the possibility of adding a second search on top of
the first one. Figure 2 shows a screenshot of GREG’s web
platform (basic mode).

The website also contains a menu for advanced options,
which essentially includes the most typical network analysis
operations, starting with shortest-path computation. When
using ‘shortest paths’, it is possible to find if two nodes are
connected or if their relationship is mediated by a third node

in the integrative network, which could suggest biological
mechanisms. Such connectivity analyses may be comple-
mentary to the usual correlation analyses. More details
about GREG’s implementation and several frequently asked
questions can be found on the website (1).

Currently, GREG’s main limitation is that search time
grows with the size of the genomic range. That means that
it is quite fast for searches on molecules (proteins, lncRNAs)
or small genomic regions, while it slows down for searches
on very large genomic regions such as whole-genome or
whole-chromosome tasks, which is the cost we pay for
including all non-coding regions. Getting access to GREG
using Neo4j/Cypher allows the user to perform any type
of Cypher query in the database beyond the ones included
in our web platform; in order to do that, the user must
contact us and wait for us to send instructions together with
a temporary username and password. Unless the user has
experience with Neo4j and Cypher, we recommend using
the web platform here described, which does not require
any login credentials.

When using small bins, the consolidated GREG network
consists of 2 778 332 nodes and 19 384 819 relationships.
Online supplementary material Table S1 shows that most
of the nodes correspond to chromatin interaction ranges
and DNA bins. Accordingly, online supplementary material
Table S2 shows that most of the relationships in the GREG
network correspond to protein–DNA binding relationships,
followed by DNA–DNA interaction relationships. Besides
statistics of nodes and relationships, we have also charac-
terized GREG in terms of the network structure. Online
supplementary material Figure S1 shows the degree distri-
bution of one chosen chromosome (chr12), revealing the
existence of many nodes with a low degree and a few hub
nodes with a higher degree. We performed additional analy-
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Table 1. Properties of all nodes and relationships in GREG

Node or relationship Properties

DNA bin Name: bin ID
Details: GENCODE information, including genes in the bin
Start: genomic coordinates of the bin’s starting point
End: genomic coordinates of the bin’s ending point

TF Name: gene symbol of the DNA-binding protein (note: TF nodes are mainly transcription factors, but GREG
also includes chromatin remodeling proteins, histone variants and other types of DNA-binding proteins)

Chromatin range Start: genomic coordinates of the range’s starting point
End: genomic coordinates of the range’s ending point

lncRNA Name: lncRNA symbol
TF–TF interaction UIDA: iRefIndex’s identifier of interactor A

UIDB: iRefIndex’s identifier of interactor B
Method: experimental method
Icrigid: iRefIndex’s identifier of the canonical version of the interaction
Edgetype: iRefIndex’s code for interaction type (X for binary relationships, C for complexes, Y for polymers)
Pubmeds: PubMed IDs describing the interaction
Confidence: iRefIndex’s bibliometric indexes of confidence (np, lpr, hpr)

TF–DNA binding GEO: Gene Expression Omnibus ID for the dataset containing the binding relationship
SourceDB: source database (currently only CistromeDB)
OtherGEO: other GEO IDs
CellType: cell type
Start: genomic coordinates of the binding site’s starting point
End: genomic coordinates of the binding site’s ending point
Confidence: Cistrome’s q-value of the binding relationship

DNA–DNA interaction SourceDB: source database (currently only 4DGenome)
Method: experimental method
PubMedID: PubMed ID describing the interaction
CellType: cell type
Confidence: confidence score from the original study, according to 4DGenome

lncRNA–DNA interaction LncRNA_ID: lncRNA ID
SourceDB: source database (currently only LnChrom)
Method: experimental method
Genomic_region: genomic coordinates of the binding site
Confidence: low- or high-throughput study
PubMedID: PubMed ID
CellType: cell type

ses of the hub nodes with the highest degree in chr12, which
we report in online supplementary material Figure S2. Gene
set analysis shows that some of such hubs are functionally
enriched; for example, Bin35 (the fifth largest DNA hub in
GREG’s chr12) contains 28 genes, which are enriched on
glycolysis and gluconeogenesis genes. Another descriptor
of network structure is the existence of modules or groups
of nodes that are densely connected internally. Modules in
protein interaction networks can be indicative of protein
complexes, while modules of chromatin interaction net-
works can be indicative of topologically associated domains
(TADs). We build a higher-order type of modules from
GREG by including all available relationships and use them
to describe a chromosome or the entire genome. Online
supplementary material Figure S3 shows all the modules
(communities) involving chr12 bins (50 modules in total)

together with the number of bins per module. According
to the clusterProfiler R package (19), all of those modules
show enrichment in at least one Kyoto Encyclopedia of
Genes and Genomes pathway or Gene Ontology term.

Example 1—exploring Nanog’s regulatory

landscape

We will illustrate the advantages of using GREG through
the study of the regulatory landscape of the human Nanog
locus. NANOG is a transcription factor involved in embry-
onic stem cell proliferation, renewal and pluripotency. First,
we will solve simple questions involving a single type of
biological interaction, which is a task that can also be
done using other resources. Then, we will proceed to more
complex scenarios involving multiple types of relationships.
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Figure 2. A screenshot of GREG’s web platform (basic mode). (a) Input data: cell type, DNA bin size and query (genomic range, transcription factor,

lncRNA or DNA annotation). (b) Options to run query: either display new graph or add query to existing graph. (c) Results window: data associated

with each node or relationship (see Table 1) can be visualized by hovering over the graph. (d) Options to manage results: delete or expand selected

nodes or relationships, filter results by a given type of relationship, print a summary report or export a graph to a graph format.

The first question we try to answer is if the NANOG
protein is acting as a multimer. Following the procedure
in online supplementary material Example 2.1, we find
that NANOG shows a self-interaction edge, which indicates
that, indeed, NANOG interacts with itself. If we check the
properties of that relationship, we can find the identifier of
the interaction, which we can use in iRefR (20) or iRefWeb
(21) if we are interested in more details. Indeed, it has
been known for a long time that NANOG functions as
a dimer (22). The second simple question is which TFs
are regulating the Nanog gene expression. Following the
procedure in online supplementary material Example 2.2,
the resulting regulatory landscape shows us a complex
multitude of protein and chromatin interactions that sum-
marizes the existing knowledge on Nanog’s regulation. We
can select ‘Regulatory Landscape Report‘ and see that the
NANOG gene spans 7 GREG DNA bins bound for 42
TFs and including 13 DNA ranges that interact with other
DNA ranges. Some of the proteins include POU5F1, EP300,
CTCF, POLR2A, H2AZ, RAD21, YY1 and NANOG itself.

The third simple question is whether the Nanog gene is
rich in chromatin interactions. Following the procedure in
online supplementary material Example 2.3, we obtain a
network including 16 DNA–DNA interactions; we can find
additional details in the corresponding report.

GREG is more valuable for studying more complex
scenarios. The fourth problem we exemplify is as follows:
we know that there is an enhancer 45 kb upstream Nanog
that regulates both Nanog and Dppa3 in mouse embryonic
stem cells (23). Is that enhancer active in human K562 cells?
Following the procedure in online supplementary material
Example 2.4, we can observe that none of the resulting
16 DNA ranges is located around 45 kb upstream Nanog.
Therefore, there is no evidence of that enhancer being
active in human K562 cells. The fifth question involves the
characterization of the ‘topologically associated domains‘,
or TADs, which are those DNA segments highly enriched
in chromatin–chromatin interactions. Following the pro-
cedure in online supplementary material Example 2.5, we
obtain a dense network or ‘chromatin hub‘. In the report,
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we find that such a hub includes 101 chromatin interac-
tions, 1 lncRNA–DNA binding, 2931 TF–DNA binding
sites and 1097 protein–protein interactions, which suggests
that this TAD might be important in terms of DNA’s 3D
organization and gene regulation.

Example 2—exploring genomic mechanisms of

COPD

COPD is a chronic respiratory disease that consists of
progressive airflow limitation and inflammatory response
of the airways and lungs. COPD-related injuries may
occur to both tissue and the extra-cellular matrix (ECM)
through processes such as ECM proteolysis, apoptosis
and oxidative stress. Other COPD cases are related to
problems with self-repair mechanisms. It is also known
that epigenetic changes and cell senescence can both
increase inflammation and decrease tissue repair (24).
Genetic association studies suggest that the best candidate
genes for COPD are CHRNA3, CHRNA5, IREB2, HHIP,
FAM13A and AGER [25]. Other candidates include
SERPINA1, TGFB2, MMP12 and RIN3 (25), as well
as IL13, MMP9, SOD3 and TGFB1 (26). However, the
mechanisms in which such genes affect COPD risk are
not well known. Online supplementary material Table S3
summarizes relevant information regarding those genes.

We have used GREG to shed light on the mechanisms
that could link COPD’s candidate genes to the phenotype.
We have collected the genomic coordinates of the main
single-nucleotide polymorphism (SNPs) related to COPD
according to SNPedia (26) (online supplementary material
Table S4); then. we have chosen IMR90 cells (correspond-
ing to lung fibroblasts) and searched for the proteins,
lncRNAs and genomic regions that may be interacting with
the bins around such SNPs.

As a first result, the lung fibroblast’s GREG network
shows that several SNP-containing COPD-associated genes
form chromatin hubs with other genes in the same chromo-
some (see online supplementary material Table S5). Based
on such information, GREG allows us to hypothesize that
mutations in CHRNA3, IL13 and MMP9 genes may respec-
tively affect chromatin hubs in chr15 (genes associated with
effects of smoking), chr5 (genes associated with cytokine
signaling, cell cycle, transport and senescence) and chr20
(genes associated with immunity, inflammation and trans-
port). These are all processes that have been related to
COPD in previous transcriptomic and epigenomic studies,
but there is no experimental evidence of the existence of
such chromatin hubs. In addition, we collected differential
expression data for the interactor genes and found that
several of them appear to be downregulated in COPD
(online supplementary material Table S5), suggesting that

some of those DNA interactions may have an effect on gene
expression.

Regarding the protein–DNA interactions found by
GREG, results are summarized in online supplementary
material Table S6. The list of binding nuclear proteins is
enriched on several proteins related to DNA interactions
and chromatin organization such as CTCF and RAD21,
as well as transcription-related proteins such as POLR2A
and H2AZ. However, it calls our attention the enrichment
on LMNB1 and RB1/RBL1, which are lamina-associated
proteins. LMNB1 encodes Lamin B1, which is a component
of the nuclear lamina. The role of Lamin B1 in lung
cancer has been previously explored (27), and it has
also been reported that LMNB1 is downregulated during
senescence in IMR90 cells (28). Very recently, Lamin B1
downregulation has also been associated with cellular
senescence during COPD (29), although we are not aware
of any links between such reports and the candidate COPD
genes. RB1 encodes the RB transcriptional co-repressor
1, which is mainly related to the cell cycle and different
types of cancer, besides heterochromatin formation, cellular
senescence and DNA damage response. It also associates
with the nuclear lamina, and it has been suggested that
failure to associate with the lamina leads to downstream
effects affecting its cell cycle and tumor suppression roles
(30). RBL1 has a similar sequence to RB1, and it is therefore
believed to have similar functions. Together, GREG’s results
point to an enrichment on lamina-related proteins whose
function may be affected by COPD-associated mutations. A
supporting argument is that cross-talk has been previously
reported between three senescence mechanisms: DNA
damage, oxidative stress and nuclear shape alterations (31).
As the two first mechanisms have been extensively discussed
in the context of COPD, the third one becomes plausible.

In summary, GREG’s data integration helps to generate
at least two hypotheses regarding the etiology of the disease:
one is the existence of specialized chromatin hubs involving
COPD genes, with a potential effect on transcription of a
second group of genes (which are also present in known
COPD pathways). The other one is the possibility of affect-
ing binding of lamina-associated proteins and, therefore,
lamina-associated regulation of the COPD genes. GREG’s
regulatory landscape has facilitated the generation of a
model that combines well-known mechanisms with new
reasonable hypotheses that may become the starting point
of deeper studies.

Discussion

The efficiency of biological graph databases has been mea-
sured before. Have and Jensen have shown some pros and
cons of using a graph database (Neo4j) versus using a rela-
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tional database (PostgreSQL) for working with the human
interaction network generated by the STRING database
(consisting of 20 140 nodes and 2.2 million relationships)
(32). They concluded that graph databases offer better
speeds than relational databases in several specific types
of queries: Neo4j happened to be 36 times faster than
PostgreSQL in finding the neighbor network, 981 times
faster in finding the best-scoring path and 2441 times faster
in finding the shortest path. Wiese et al. (33) built a gene
regulatory graph database and found scalability of query
execution using a small and a large Neo4j database. Increas-
ing the number of nodes did not impact the runtime in a
significant way while increasing the number of relationships
did. However, Neo4j keeps a node/relationship cache, and
such cache has a positive effect on runtime. After warming
up the cache (34), the execution time for processing queries
decreased by 64% compared to the cold-boot (no-caching)
scenario, for both a small and a large database, with the
execution times being similar between the small and the
large datasets.

In addition to efficiency, we suggest four main reasons
for using GREG in biological research:

1. Traditional gene regulation analyses become much sim-
pler, faster and powerful using the unified view of
GREG’s web platform instead of combining informa-
tion from multiple other tools, such as genome browsers
and the websites of individual interaction databases.

2. The users do not need to get a text or image file as a
result and then convert it to a graph. They get the graph
instead.

3. There is a possibility of graphical queries, such as
extending the query to the neighbors of the query nodes
or finding the shortest paths between two genomic
regions. Neo4j has multiple methods for community,
centrality and shortest-path detection. That means that
we can also ask questions such as ‘what happens in the
neighborhood of that module/node?’, ‘what is the most
important node?’ or ‘how are these two regions/nodes
connected?’

4. All of these can be accomplished via an intuitive web
interface, which requires minimal input from the user,
skipping the need to get data from different resources,
load it to R or similar computational software, write
scripts for data integration and make network analysis
with a specific network library.

We have shown that the complex networks retrieved
by GREG are useful for exploratory research of the mul-
tiple types of interactions around a target molecule or
genomic range, as well as in finding potential mechanisms
of disease. We can also foresee additional applications in
medical and pharmacological research. For example, in

the field of disease markers, where research has moved
from identifying disease-associated molecules to disease-
associated modules on networks (network biomarkers),
an approach that may benefit from GREG’s integrative
nature. Or in the drug target prediction field, where the
multiple types of interactions in a GREG landscape allow
a more accurate representation and might improve the
performance of network-based drug target identification
methods. Besides that, we expect GREG to keep evolving,
given that its ‘graph database’ and ‘integrative network’
nature has the advantage of facilitating the addition of
more databases, more cell types and more types of network
analyses.
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